1,783 research outputs found

    Deformations of the Monge/Riemann hierarchy and approximately integrable systems

    Full text link
    Dispersive deformations of the Monge equation u_u=uu_x are studied using ideas originating from topological quantum field theory and the deformation quantization programme. It is shown that, to a high-order, the symmetries of the Monge equation may also be appropriately deformed, and that, if they exist at all orders, they are uniquely determined by the original deformation. This leads to either a new class of integrable systems or to a rigorous notion of an approximate integrable system. Quasi-Miura transformations are also constructed for such deformed equations.Comment: 9 pages LaTe

    Symmetries and Solutions of Getzler's Equation for Coxeter and Extended Affine Weyl Frobenius Manifolds

    Full text link
    The G-function associated to the semi-simple Frobenius manifold C^n/W (where W is a Coxeter group or an extended affine Weyl group) is studied. The general form of the G function is given in terms of a logarithmic singularity over caustics in the manifold. The main result in this paper is a universal formula for the G-function corresponding to the Frobenius manifold C^n/W^(k)(A_{n-1}) where W^(k)(A_{n-1}) is a certain extended affine Weyl group (or, equivalently, corresponding to the Hurwitz space M_{0;k-1,n-k-1}), together with the general form of the G-function in terms of data on caustics. Symmetries of the G function are also studied.Comment: 9 pages, LaTe

    Simple Elliptic Singularities: a note on their G-function

    Full text link
    The link between Frobenius manifolds and singularity theory is well known, with the simplest examples coming from the simple hypersurface singularities. Associated with any such manifold is a function known as the GG-function. This plays a role in the construction of higher-genus terms in various theories. For the simple singularities the G-function is known explicitly: G=0. The next class of singularities, the unimodal hypersurface or elliptic hypersurface singularities consists of three examples, \widetilde{E}_6,\widetilde{E}_7,\widetilde{E}_8 (or equivalently P_8, X_9,J_10). Using a result of Noumi and Yamada on the flat structure on the space of versal deformations of these singularities the GG-function is explicitly constructed for these three examples. The main property is that the function depends on only one variable, the marginal (dimensionless) deformation variable. Other examples are given based on the foldings of known Frobenius manifolds. Properties of the GG-function under the action of the modular group is studied, and applications within the theory of integrable systems are discussed.Comment: 15 page

    A Geometry for Multidimensional Integrable Systems

    Get PDF
    A deformed differential calculus is developed based on an associative star-product. In two dimensions the Hamiltonian vector fields model the algebra of pseudo-differential operator, as used in the theory of integrable systems. Thus one obtains a geometric description of the operators. A dual theory is also possible, based on a deformation of differential forms. This calculus is applied to a number of multidimensional integrable systems, such as the KP hierarchy, thus obtaining a geometrical description of these systems. The limit in which the deformation disappears corresponds to taking the dispersionless limit in these hierarchies.Comment: LaTeX, 29 pages. To be published in J.Geom.Phy

    Deformations of dispersionless KdV hierarchies

    Full text link
    The obstructions to the existence of a hierarchy of hydrodynamic conservation laws are studied for a multicomponent dispersionless KdV system. It is shown that if an underlying algebra is Jordan, then the lowest obstruction vanishes and that all higher obstructions automatically vanish. Deformations of these multicomponent dispersionless KdV-type equations are also studied. No new obstructions appear, and hence the existence of a fully deformed hierarchy depends on the existence of a single purely hydrodynamic conservation law.Comment: 12 papge

    Degenerate Frobenius manifolds and the bi-Hamiltonian structure of rational Lax equations

    Full text link
    The bi-Hamiltonian structure of certain multi-component integrable systems, generalizations of the dispersionless Toda hierarchy, is studies for systems derived from a rational Lax function. One consequence of having a rational rather than a polynomial Lax function is that the corresponding bi-Hamiltonian structures are degenerate, i.e. the metric which defines the Hamiltonian structure has vanishing determinant. Frobenius manifolds provide a natural setting in which to study the bi-Hamiltonian structure of certain classes of hydrodynamic systems. Some ideas on how this structure may be extanded to include degenerate bi-Hamiltonian structures, such as those given in the first part of the paper, are given.Comment: 28 pages, LaTe

    On the isomonodromic tau-function for the Hurwitz spaces of branched coverings of genus zero and one

    Full text link
    The isomonodromic tau-function for the Hurwitz spaces of branched coverings of genus zero and one are constructed explicitly. Such spaces may be equipped with the structure of a Frobenius manifold and this introduces a flat coordinate system on the manifold. The isomonodromic tau-function, and in particular the associated GG-function, are rewritten in these coordinates and an interpretation in terms of the caustics (where the multiplication is not semisimple) is given.Comment: 18 page

    The dispersive self-dual Einstein equations and the Toda lattice

    Get PDF
    The Boyer-Finley equation, or SU(∞)SU(\infty)-Toda equation is both a reduction of the self-dual Einstein equations and the dispersionlesslimit of the 2d2d-Toda lattice equation. This suggests that there should be a dispersive version of the self-dual Einstein equation which both contains the Toda lattice equation and whose dispersionless limit is the familiar self-dual Einstein equation. Such a system is studied in this paper. The results are achieved by using a deformation, based on an associative ⋆\star-product, of the algebra sdiff(Σ2)sdiff(\Sigma^2) used in the study of the undeformed, or dispersionless, equations.Comment: 11 pages, LaTeX. To appear: J. Phys.

    A note on the relationship between rational and trigonometric solutions of the WDVV equations

    Get PDF
    Legendre transformations provide a natural symmetry on the space of solutions to the WDVV equations, and more specifically, between different Frobenius manifolds. In this paper a twisted Legendre transformation is constructed between solutions which define the corresponding dual Frobenius manifolds. As an application it is shown that certain trigonometric and rational solutions of the WDVV equations are related by such a twisted Legendre transform

    The algebraic and Hamiltonian structure of the dispersionless Benney and Toda hierarchies

    Get PDF
    The algebraic and Hamiltonian structures of the multicomponent dispersionless Benney and Toda hierarchies are studied. This is achieved by using a modified set of variables for which there is a symmetry between the basic fields. This symmetry enables formulae normally given implicitly in terms of residues, such as conserved charges and fluxes, to be calculated explicitly. As a corollary of these results the equivalence of the Benney and Toda hierarchies is established. It is further shown that such quantities may be expressed in terms of generalized hypergeometric functions, the simplest example involving Legendre polynomials. These results are then extended to systems derived from a rational Lax function and a logarithmic function. Various reductions are also studied.Comment: 29 pages, LaTe
    • 

    corecore